

Picaros Solutions, Inc Business Is Intelligent SM info@picarossolutions.com

Norristown, PA 19403

“Dynamic” Metadata Based Database Design

One situation that we often face when dealing with a dynamic environment is how to build

solutions that accommodate dynamic changing structures and this is a conundrum from both an

operational and warehousing perspective. Situations like changing structure of incoming data,

the need to customize software packages for different clients and so forth. While there is no real

silver bullet, a metadata based approach can pave the way. However, there are some

considerations to keep in mind:

 The metadata based approach can be very effective for operational systems where one has the

advantage of using (custom) programming to dynamically interpret the model and produce

relevant results – most ERP systems today do a similar thing. Although, having seen some in

action, sometimes I wonder at the wisdom behind the complications (read mess) they create

 Reporting tools could be used effectively in ad-hoc environments. Clearly, canned reporting

cannot be expected to be realistically dynamic beyond a point

 For analytics using BI tools, it would be a very tall order, atleast in my opinion. These tools

would work well in architected environments based of solid warehouse or datamart designs,

not really trying to interpret metadata

Let us look at a simplistic approach, a skeleton model if you will:

Picaros Solutions, Inc Business Is Intelligent SM info@picarossolutions.com

Norristown, PA 19403

Please note that as I illustrate, this is still high-level obviously, so there will be gaps in my

statements, I am not even trying to be completely exhaustive in my commentary as it is

mostly intuitive here on.

 Application is not really a stretch assuming this is to be used as a common central model

across applications, or it (or a variant) can be used for something else, a collection of

some sort

 Table List is the basic list of tables that an application would need

o Static Table Flag would indicate that the is table is part of core design I am

extending

o The attributes listed here is just a sample, one can customize this as needed

obviously

 Data Type is the full list of available data types supported by the specific DBMS engine

being used – one could think of making this exhaustive to avoid portability issues –

afterall this is just data

 Table Field is the list of attributes per table along with specifications – highly

customizable

 Actual Data is where the field data would be “stored” – albeit it will only be a pointer to

the real place where data in its needed native format is stored

o Point to note here is there is an implied one-to-one relation between the number of

data types and the number of Actual Data tables – 4 in the above example – we

can be clever how this is done physically – for instance String Data can be used

for multiple data types

o One would also question as to why not store everything as string/text and convert

as needed

o Storing it in native format has advantages instead of constantly converting the

data for (say) performing mathematical operations on it. Also, when we

denormalize the structure, we do not have to first create the structure and load

data, a SQL like “CREATE XYZ AS SELECT…” or “SELECT * INTO XYZ”

While the above is simplistic, it should not be used (I wouldn’t) to encompass the entire database

design – we could capture an entire database design within this simple design, subject to

“beefing” it up ofcourse in a relevant manner providing more usable attributes. What I would use

this for, is to extend a static design that I would do in a normal situation assuming no “dynamic”

need. The static design would encompass the core functionality that is fundamental to the

application. Although, other than performance arguments can come up in an OLTP environment,

I cannot think of a reason as to why not.

The above solution is purely a (kind of – I wouldn’t call my column names like the above)

physical manifestation – the modeler still needs to logically capture the functionality needed to

enable population of the metadata into the above tables.

Picaros Solutions, Inc Business Is Intelligent SM info@picarossolutions.com

Norristown, PA 19403

While this design is useful to capture data in a changing/dynamic environment with some clever

programming, it is not readily accessible for reporting purposes. To enable such a design to be

usable for reporting (without having to jump hoops and this means interpreting metadata about

the available tables and fields), we have to think in terms of “flattening” the structures & data.

 A cleverly written stored procedure or program can create a table with proper datatypes

and push all the data into it, so it would look like a real table that we would have

normally designed – this table would change structurally if we change the design, so

controls would need to be established

 In applications where maintenance is involved, update/delete functionality can be carried

out with some clever programming to account for integrity

Let me illustrate this with an example:

Application

Application Identifier Application Name Current Version

1 Dummy 1.0

…

Table List

Table Identifier Table Name Static Table Flag

1 TABLE1 Y

2 TABLE2 N

…

Data Type

Datatype Identifier Datatype Name

1 Date

2 Decimal

3 Integer

4 String

…

Table Field (Keeping it simple for this illustration)

Field Identifier
(Non-intelligent)

Application

Identifier

Table

Identifier

Datatype

Identifier

Field Name Field Order …..

101 1 1 3 FIELD11 11

102 1 1 3 FIELD12 12

103 1 1 3 FIELD13 13

104 1 1 1 FIELD14 14

1201 1 2 3 ID 1

1202 1 2 4 CODE 2

1203 1 2 4 NAME 3

Picaros Solutions, Inc Business Is Intelligent SM info@picarossolutions.com

Norristown, PA 19403

Field Data

Field Identifier Data Identifier GUID Comments

101 1 … This bunch will

be for one record 102 2 …

103 3 …

104 1/1/2013 …

…

1201 1 … This bunch will

be for one record 1202 SAMP1 …

1203 Sample Code 1 …

…
 Instead of pointer values for Data Identifier and create more illustration tables, I am putting the

actual value here for simplicity

 As I stated before, this is not exhaustive, for instance it does not explain how primary keys will be

maintained etc

F_TABLE1 (Flat Table)

ORIGINAL1 OTHER9FIELDS FIELD11 FIELD12 FIELD13 FIELD14

… 1 2 3 1/1/2013

… 11 22 33 12/31/2013

F_TABLE2 (Flat Table)

ID CODE NAME

1 SAMP1 Sample Code 1

2 SAMP2 Sample Code 2

…

 If TABLE1 is part of my static design as indicated by Static Table Flag, I can still extend

it with changing situations (see the value of 11 in the field Order indicating there are 10

other fields in this table) – this will be especially useful if there is a lot of code written

around TABLE1 and there is a risk of breaking things if the table structure is altered

o Augmenting a table design can be tricky in terms of how data will be updated for

the new fields, but not something programming cannot handle

 F_TABLE1 is what is exposed to reporting and other tools and by the time F_TABLE1

is created any complexity arising out of metadata is eliminated. Any code written around

non-static tables should be written in a mandated dynamic style

 Key thing to ensure (structure) changes do not have an impact is to always add new fields

at the end – just like an “alter table” would work by ensuring that the attribute Field

Order is controlled

o While fields can be dropped seamlessly, it should be handled with caution, in case

reports have been created using them

o Due diligence as always would definitely be warranted

Picaros Solutions, Inc Business Is Intelligent SM info@picarossolutions.com

Norristown, PA 19403

 There is no shame in flattening it, afterall the purpose is for the data to be usable, most

likely by power-users for adhoc reporting or even to setup templates that regular users

can quickly use

 By ensuring the order of fields is not altered, any new dynamic fields that make it in will

(or should) not impact the downstream functionality and new tables/fields can be used

only with some controlled effort

The flattened tables are pretty easy to use as can be seen, changing environments can be

controlled and reporting/analytic solutions can be built based on these. In fact, if architected

designs are the norm for BI tools and they can withstand some underlying structure changes in

terms of new fields (which clearly will not be available within these tools till they are added),

then this approach can be used even with analytic tools.

That is a lot of talk (or written words), so one can wonder if it is “proven”?

As I stated in the beginning, many ERP tools do use some approach to ensure they can customize

their tools for different customers – however, from what I could gather over time, they tend to

alter physical tables in place (like TABLE1 above) and dynamic SQL is what drives their UI

code.

The manner in which I have built solutions using the above simplistic model in two separate

situations:

 Ages ago, when I used to be a power programmer myself and the cost of a data modeling

tool in my venerable hometown was almost-prohibitory – I used a rudimentary design

along these lines (a little more constricted as I had a specific purpose) to mock the

functionality I would get from a modeling tool to build a data dictionary application to

establish data (naming, domain etc) standards and also used it to produce a lot of standard

database code (stored procedures and triggers) to be used with the application code for

manipulating the data

 More recently, I used a design closer to the above to provide functionality to a suite of

software products being built around a common data set – this ofcourse was extend-the-

core-design path and I did have to programmatically flatten the table as a POC

So, basically the answer is – yes, it is eminently doable!

